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Abstract

It is thought that one role of the basal ganglia is to
constitute the neural substrate of action selection.
We propose here a modification of the action selec-
tion model of the basal ganglia of (Gurney et al.,
2001a,b) so as to improve its dynamical features.
The dynamic behaviour of this new model is as-
sessed by using the theoretical tool of contraction
analysis. We simulate the model in the standard test
defined in (Gurney et al., 2001b) and also show that
it performs perfect selection when presented a thou-
sand successive random entries. From a biomimet-
ical point of view, our model takes into account a
usually neglected projection from GPe to the stria-
tum, which enhances its efficiency.
Keywords: contraction analysis, action selection,
basal ganglia, computational model

1 Introduction
The basal ganglia are a set of interconnected subcortical nu-
clei, involved in numerous processes, from motor functions
to cognitive ones (Mink, 1996; Middleton and Strick, 1994).
Their role is interpreted as a generic selection circuit, and they
thus have been proposed to constitute the neural substrate of
action selection (Mink, 1996; Krotopov and Etlinger, 1999;
Redgrave et al., 1999).

The basal ganglia are included in cortico-basal ganglia-
thalamo-cortical loops, five main loops have been identified
in primates (Alexander et al., 1986, 1990; Kimura and Gray-
biel, 1995): motor, oculomotor, prefrontal (two of them) and
limbic loops. Within each of these loops, the basal ganglia
circuitry is organised in interacting channels, among which
selection occurs. The output nuclei of the basal ganglia are
tonically active and inhibitory, and thus maintain their targets
under sustained inhibition. Selection occurs via disinhibition
(Chevalier and Deniau, 1990): the removal of the inhibition
exerted by one channel on its specific target circuit allows
the activation of that circuit. Concerning action selection, the
basal ganglia channels are thought to be associated to basic
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competing actions. Given sensory and motivational inputs,
the basal ganglia are thus supposed to arbitrate among these
actions and to allow the activation of the winner by disinhibit-
ing the corresponding motor circuits.

Numerous computational models of the BG have been pro-
posed in the past (Gillies and Arbruthnott, 2000, for a review)
in order to explain the operation of this disinhibition process,
the most recent and complete model –in terms of anatom-
ically identified connections accounted– is the GPR model
proposed by Gurney et al. (2001a,b). Beyond its generic se-
lection properties, explored in (Gurney et al., 2001b), the ef-
ficiency of the GPR as an action selection device has been
tested in both robotic and simulated animats solving various
tasks, involving execution of behavioural sequences, survival
and navigation (Montes-Gonzalez et al., 2000; Girard et al.,
2003, 2005).

The properties of the GPR were analytically studied at
equilibrium, however the stability of this equilibrium (and
thus the possibility to reach it) was not assessed. We propose
to use contraction analysis (Lohmiller and Slotine, 1998) –a
theoretical tool to study the dynamic behaviour of non-linear
systems– in order to build a new model of the basal ganglia
whose stability can be formally established. By using recent
data (Parent et al., 2000) concerning the projections of a basal
ganglia nucleus (the external part of the globus pallidus), we
improve the quality of its selection with regards to GPR and
then test this improvement in simulation. Finally, we discuss
the remaining biomimetic limitations of the proposed model.

2 Nonlinear Contraction Analysis
Basically, a nonlinear time-varying dynamic system will be
called contracting if initial conditions or temporary distur-
bances are forgotten exponentially fast, i.e., if trajectories of
the perturbed system return to their nominal behaviour with
an exponential convergence rate. This is an extension of the
well-known stability analysis for linear systems with the great
advantage that relatively simple conditions can still be given
for this stability-like property to be verified, and furthermore
that this property is preserved through basic system combina-
tions. We also want to stress that assuming that a system is
contracting, we only have to find a particular stable trajectory
to be sure that the system will eventually tend to this trajec-
tory. It is thus a way to analyse the dynamic behaviour of a
model without linearised approximation.



2.1 The basic brick
In this section, we summarise the variational formulation
of contraction analysis of (Lohmiller and Slotine, 1998), to
which the reader is referred for more details. It is a way
to prove the contraction of a whole system by analysing the
properties of its Jacobian only. This can be seen as the basic
brick of the theory, as in next sections we will often study the
contraction of small components of the system and then de-
duce the global contraction of the system using combination
rules (see section 2.2).

Consider a n-dimensional time-varying system of the
form:

ẋ(t) = f(x(t), t) (1)

where x ∈ R
n and t ∈ R+ and f is n × 1 non-linear vec-

tor function which is assumed to be real and smooth in the
sense that all required derivatives exist and are continuous.
This equation may also represent the closed-loop dynamic of
a neural network model of a brain structure.

We now restate the main result of contraction analysis, see
(Lohmiller and Slotine, 1998) for details and proof.

Theorem 1 Consider the continuous-time system (1). If
there exists a uniformly positive definite metric

M(x, t) = Θ(x, t)T
Θ(x, t)

such that the generalised Jacobian

F = (Θ̇ + ΘJ)Θ−1

is uniformly negative definite, then all the all system trajec-
tories converge exponentially to a single trajectory with con-
vergence rate |λmax|, where λmax is the largest eigenvalue of
the symmetric part of F. The system is said to be contracting.

Remark. In many cases, if the system is not properly de-
fined, the expected metric may be hard to find. Most often, it
is possible to fall into a standard combination of contracting
systems just by rearranging the order of variables considered
whereas the original definition of the system did not stress
contraction properties.

2.2 Combination of contracting systems
We now present standard results on combination of contract-
ing systems which will help us in showing that our model is
contracting by analysing first contraction of each nucleus on
one side and then their relative combination.

Hierarchies
The most useful combination is the hierarchical one. Con-
sider a virtual dynamic of the form

d

dt

(

δz1

δz2

)

=

(

F11 0

F21 F22

) (

δz1

δz2

)

The first equation does not depend on the second, so that ex-
ponential convergence of the whole system can be guaranteed
(Lohmiller and Slotine, 1998). The results can be applied re-
cursively to combinations of arbitrary size.

Feedback Combination
Consider two contracting systems and an arbitrary feedback
connection between them (Slotine, 2003). The overall virtual
dynamics can be written

d

dt

(

δz1

δz2

)

= F

(

δz1

δz2

)

Compute the symmetric part of F, in the form

1

2
( F + F

T ) =

(

F1s Gs

G
T
s F2s

)

where by hypothesis the matrices Fis are uniformly negative
definite. Then F is uniformly negative definite if and only if
F2s < G

T
s F

−1

1s Gs , a standard result from matrix algebra
(Horn and Johnson, 1985). Thus, a sufficient condition for
contraction of the overall system is that

σ2(Gs) < λ(F1) λ(F2) uniformly ∀x, ∀t ≥ 0

where λ(Fi) is the contraction rate of Fi and σ(Gs) is the
largest singular value of Gs. Again, the results can be applied
recursively to combinations of arbitrary size.

Contraction analysis on convex regions
Consider a contracting system ẋ = f(x, t) maintained in
a convex region Ω (i.e. a region Ω in which any shortest
connecting line (geodesic)

∫

x2

x1

‖δx‖ between two arbitrary
points x1 and x2 in Ω is completely contained in Ω). Then all
trajectories in Ω converge exponentially to a single trajectory
(Lohmiller and Slotine, 2000). Furthermore, the contraction
rate can only be sped up by the convex constraint.

2.3 Our basic contracting system : the leaky
integrator

In our model of basal ganglia, we will use leaky integrator
models of neurons. The following equations describe the be-
haviour of our neurons where τ is a time constant a(t) is the
activation, y(t) is the output, I(t) represents the input of the
neuron, and f is a continuous function which maintains the
output in an interval.

{

τ ȧ(t) = −a(t) + I(t)
y = f(a)

This kind of neuron is basically contracting since its Jaco-
bian is − 1

τ
and the interval defined by the transfer function is

a particular convex region.
In the rest of this paper, we will use the family of functions

fε,max:

{

0 if x ≤ ε
x − ε if ε ≤ x ≤ max + ε
max else

(2)

3 Model description
The basic architecture of our model is very similar to the GPR
(fig 1). We use the same leaky-integrator model of neurons as
building blocks, each BG channel in each nucleus being rep-
resented by one such neuron. The input of the system is a
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Figure 1: Basal ganglia model. Nuclei are represented by
boxes, each circle in these nuclei represents an artificial
leaky-integrator neuron. On this diagram, three channels are
competing for selection, represented by the three neurons in
each nucleus. The second channel is represented by grey
shading. For clarity, the projections from the second channel
neurons only are represented, they are identical for the other
channels. White arrowheads represent excitations and black
arrowheads, inhibitions. D1 and D2: neurons of the striatum
with two respective types of dopamine receptors; STN: sub-
thalamic nucleus; GPe: external segment of the globus pal-
lidus; GPi/SNr: internal segment of the globus pallidus and
substantia nigra pars reticulata.

vector of saliences, representing the propensity of each be-
haviour to be selected. Each behaviour in competition is as-
sociated to a specific channel and can be executed if and only
if its level of inhibition decreases below a fixed threshold θ.

An important difference between the GPR and our model is
the nuclei targeted by the external part of the globus pallidus
(GPe) and the nature of these projections. The GPe projects to
the subthalamic nucleus (STN), the internal part of the globus
pallidus (GPi) and the substantia nigra pars reticulata (SNr),
but also to the striatum. Our model includes the striatum pro-
jections, which have been documented (Staines et al., 1981;
Kita et al., 1999) but excluded from previous models. More-
over, the striatal terminals target the dendritic trees, while pal-
lidal, nigral and subthalamic terminals form perineuronal nets
around the soma of the targeted neurons (Sato et al., 2000).
This specific organisation allows GPe neurons to influence
large sets of neurons in GPi, SNr and STN (Parent et al.,
2000), thus the sum of the activity of all GPe channels influ-
ences the activity of STN and GPi/SNr neurons (eqn. 5 and
7), while there is a simple channel-to-channel projection to
the striatum (eqn. 3 and 4).

The striatum is one of the two input nuclei of the BG,
mainly composed of GABAergic (inhibitory) medium spiny
neurons. As in the GPR model, we distinguish the neurons
with D1 and D2 dopamine receptors and modulate the input
generated in the dendritic tree by λ, which here encompasses
salience and GPe projections. Lateral inhibitions are also im-
plemented, but their weights wLatD1 and wLatD2 is kept within
the limits set the contraction analysis (see section 4.1). The

input to each neuron i of the D1 and D2 sub parts of the stria-
tum is therefore defined as follows (N being the number of
channels):

ID1
i = (1 + λ)(Si − wD1

GP e
yGPe

i ) − wLatD1

N
∑

j=1

j 6=i

ID1
j (3)

ID2
i = (1 − λ)(Si − wD2

GP e
yGPe

i ) − wLatD2

N
∑

j=1

j 6=i

ID2
j (4)

The up-state/down-state of the striatal medium spiny neu-
rons is modelled, as in (Gurney et al., 2001b), by activa-
tion thresholds ε

D1
and ε

D2
under which the neurons remain

silent.
The sub-thalamic nucleus (STN) is the second input of the

basal ganglia and receives also projections from the GPe. Its
glutamatergic neurons have an excitatory effect and project to
the GPe and GPi. The resulting input of the STN neuron is
given by:

ISTN
i = Si − wST N

GP e

N
∑

j=1

yGPe
j (5)

The tonic activity of the nucleus is modelled by a negative
threshold of the transfer function ε

STN
.

The GPe is inhibitory nucleus, similarly as in the GPR, it
receives channel-to-channel afferents from the striatum and a
diffuse excitation from the STN:

IGPe
i = −wGP e

D2
yD2

i + wGP e

ST N

N
∑

j=1

ySTN
j (6)

The GPi and SNr are the inhibitory output nuclei of the BG,
which keep their targets under inhibition unless a channel is
selected. They receive channel-to-channel projections from
the D1 striatum and diffuse projections from the STN and the
GPe:

IGPi
i = − wGP i

D1
yD1

i + wGP i

STN

N
∑

j=1

ySTN
i

− wGP i

GP e

N
∑

j=1

yGPe
j

(7)

This model keeps the basic off-centre on-surround select-
ing structure, duplicated in the D1-STN-GPi/SNr and D2-
STN-GPe sub-circuits, of the GPR. However, the channel
specific feedback from the GPe to the Striatum helps sharp-
ening the selection by favouring the channel with the highest
salience in D1 and D2. Moreover, the global GPe inhibition
on the GPi/SNr synergetically interacts with the STN excita-
tion in order to limit the amplitude of variation of the inhibi-
tion of the unselected channels.



4 Mathematical results
We first analyse the contraction of the GPR model before
showing under which weighting constraints our model is con-
tracting and which sufficient salience input conditions allow
it to perform “perfect selection” (output inhibition of selected
channels equal to 0).

4.1 Contraction analysis of the GPR model
While it is difficult to refute contraction of a system as the
metric in which it is contracting is not given a priori, we can
study contraction in particular metrics for the sake of finding
a contra-example which will demonstrate the non-contracting
behaviour of the system.

First, remark that lateral connections on striatum (D1 and
D2) make the model non-contracting in the identity metric
when the weight of inhibition wLat ≥ 1. Indeed, by comput-
ing directly the eigenvalues of the Jacobian

J =











−1 −wLat . . −wLat

−wLat −1 . . .
. . . . .
. . . . −wLat

−wLat . . −wLat −1











we have λmax ≤ −1+wLat. Unsurprisingly, when wLat = 1
the system has multiple points of stability and thus the model
is not contracting in any metric.

A typical example of multiple points of stability occurs
when two channels, say i and j, have the same highest
salience Smax for input. We then have a continuum of
possible stable points in D1 and D2 covering the segment
ai + aj = Smax with ai, aj ≥ 0, while all the other channels
being fully inhibited.

Such a situation occurs when reproducing the basic selec-
tion test proposed in (Gurney et al., 2001b). In this five-steps
test (fig. 2), no channels are excited during the first one, and
none of them is thus selected; then during the second one, the
salience of channel 1 is increased and this channel is conse-
quently selected; during the third one, channel 2 is provided a
larger salience than channel 1, channel 1 is thus inhibited and
channel 2 selected; in the fourth one, the salience of channel
1 is increased to a value equal to the salience of channel 2,
channel 1 is however not selected while channel 2 remains
selected; finally the salience of channel 1 is decreased to its
initial level. Such a drawback can only be solved by reducing
wLat to a value strictly inferior to 1.

Second, suppose wLat is set under 1 to avoid this specific
problem, it remains to show that the GPe/STN loop is con-
tracting. Using the feedback analysis with a scaling metric
that dilates the states space of the second system involved (a
key tool in the study of many feedbacks)

M =

(

I 0

0 αI

)

, α > 0

makes us compute the maximum singular value of Gs (see
section 2.2):

σ(Gs) = max(
α

2
,
1

2
(−αwST N

GP e
+

N

α
wGP e

ST N
))
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Figure 2: Simulation results (GPi/SNr inhibitory output) for
the first three channels of a 6-channels system, using the Gur-
ney et al. (2001b) test on the GPR model. During the period
900ms < t < 1200ms, channels 1 and 2 have the same input
saliences, and channel 2 only is selected. Dashed lines repre-
sent the input salience of the channel and solid lines represent
the output of the channel.



which gives rise to the following condition on N :

N <
4

wGP e
ST N

(1 + wST N

GP e
)

Analysed in the scaling metric, the contraction of the GPR
is proven when N remains below this bound, which corre-
sponds to N < 6 with the parameters used in (Gurney et al.,
2001b). This does not strictly demonstrate that the GPR
model with lateral striatal inhibitons lower than 1 is not con-
tracting for N ≥ 6, as there might be another metric in which
the analysis would give a contraction result with a different
dependence on, or even an independence from, N . It however
suggests that, even if the result is not conclusive, the condi-
tions of contraction of the GPR model probably depend on
N , this is the main motivation for proposing a model whose
contraction is proven for less restrictive conditions.

4.2 Contraction of the model
The contraction of our model is demonstrated using the com-
bination properties of contracting systems.

First, we see that every nucleus is trivially contracting with
a rate 1

τ
as no lateral connection is allowed except for the

Di’s which are contracting when wLatDi < 1 with rate 1

τ
| −

1 + wLatDi| (see section 4.1). Dealing with thresholds of the
leaky-integrator transfer functions is transparent as it is just a
particular case of contraction analysis on convex regions (see
section 2.2).

Next, defining the system carefully leads to a hierarchical
system of trivially contracting systems except for the loops
between STN/GPe and D2/GPe. Thus, we only have to
master those loops thanks to the feedback combination anal-
ysis to guarantee contraction of the whole system.

STN/GPe
Thanks to our reformulation of the GPe to STN projections
(diffuse rather than channel-to-channel), this loop is now con-
tracting as it is a positive/negative feedback. In other word,
considering the metric

M1 =

(

wST N

GP e
I 0

0 wGP e

ST N
I

)

leads to the generalised Jacobian

F =

(

−I (wST N

GP e
wGP e

ST N
)

1

2 1

−(wSTN

GP e
wGP e

ST N
)

1

2 1 −I

)

and the feedback thus disappears as the symmetrical of F

is simply −I .

D2/GPe
The feedback is of the form negative/negative feedback and
thus we can just try to minimise the impact of the loop by
taking the average of each negative feedback. This is realised
by considering the metric

M2 =

(

wGP e

D2
I 0

0 wD2

GP e
I

)

which tells us that the system is contracting as long as
wGP e

D2
wD2

GP e
< −1 + wLatD2

The last equation is obtained by using feedback analysis, see
section 2.2 for more details.

4.3 Analytical results
As our model is contracting, we only have to find a particular
solution to be sure that the system will eventually reach this
solution. But, because this contracting system is autonomous
(time-invariant), we know that this solution is an equilibrium
(Slotine, 2003). Thus, it just remains to show that this equi-
librium performs the awaited selection.

Naturally, as for GPR, we can show that our model is or-
der preserving and that

∑n

j=0
ySTN

j is bounded. But more
interestingly, we can analytically study our model in the ideal
case when the stable state is one active neuron only, say i0,
in D2 and one inactive in GPe (necessarily the same i0). We
call this situation ideal case as the selection is completely
performed in the D2 − STN − GPe loop and the rest of the
model simply copies this selection.

Assuming that the salience input of the system leads to the
this particular behaviour, we can obtain the following equa-
tions by solving the system of linear equations defined in sec-
tion 3, using that a = I for all neurons at equilibrium.

N
∑

j=1

ySTN
j =

∑

ySTN
j

6=0
(Sj + ε

STN
)

1 + act(N − 1)wGP e
ST N

wST N
GP e

Si0 ≥ ε
D2

+
wGP e

STN

wGP e
D2

N
∑

j=1

ySTN
j

Si ≤ε
D2

+ wLatD2(Si0 − ε
D2

)

+ wD2

GP e
wGP e

ST N

N
∑

j=1

ySTN
j i 6= i0

where act is the number of neurons of the STN whose
activation is larger than ε

STN
. Remark that when (N −

1)wGP e

ST N
wST N

GP e
= 1,

∑n

j=0
ySTN

j computes essentially the
mean of the active saliences.

Those equations give a range of saliences input for which
the model reacts ideally, as its equilibrium corresponds to a
“perfect selection”, where the selected channel is completely
disinhibited. Outside this range, the behaviour is more awk-
ward as the whole system is involved in improving the partial
selection made by the D2 −STN −GPe loop. It might con-
tinue to perform “perfect selection”, perform a less precise
selection or behave differently, hence the simulation of sec-
tion 5.2 in a wide set of input conditions.

5 Simulation results
Similarly to the simulations made by Gurney et al. (2001b),
we used a 6-channel model. The parameters were set to
the values summarised in table 1. wLatD1, wLatD2, wGP e

D2

and wD2

GP e
were set to values compatible with the constraints

needed to ensure the contraction of the system (see 4.2). wD1

GP e

and wGP i

ST N
were set to values identical to wD2

GP e
and wGP e

ST N
re-

spectively, for the sake of symmetry, whereas it is not manda-
tory with regards to contraction. Finally we set wGP i

D1
to 1

rather than to 0.7 (as wGP e

D2
) in order to favour strong selec-

tive inhibitions over GPi and thus “perfect selections”.
The simulation was programmed in C++, using the simple

Euler approximation for integration, with a time step of 1ms.



Table 1: Parameters of the simulations.

wLatD1 0.4 wGP e

D2
0.7 τ 0.003s

wLatD2 0.4 wGP i

D1
1 λ 0.2

wD1

GP e
1 wGP e

STN
0.35 ε

D1
200

wD2

GP e
1 wGP i

STN
0.35 ε

D2
200

wST N

GP e
0.35 ε

STN
-150

wGP i

GP e
0.08

5.1 Reproduction of GPR basic selection
properties

We reproduced the selection experiment of Gurney et al.
(2001b), were the system is submitted a sequence of five dif-
ferent salience vectors. As we bounded the activity of our
neurons between 0 and 1000, while Gurney et al. had an up-
per limit of 1, we multiplied by 1000 the input saliences for
this test. Each vector is submitted to the system during 0.3s
before switching to the next one in the sequence (fig. 3).

First, all saliences are null, and the system stabilises in a
situation where all channels are equally inhibited. Then, the
first channel receives a 400 input salience which results in
perfect disinhibition of this channel (yGPi

1 = 0) and increased
inhibition of the others. When the second channel salience is
set to 600, it becomes perfectly selected (yGPi

2 = 0) while
the first one is rapidly inhibited to a level identical to the
one of the four last channels. During the fourth step, the
salience of the first channel is increased to 600, channels 1
and 2 are therefore simultaneously selected. Finally, during
the last step of the test, the salience of channel 1 is reduced
to 400, which is then rapidly inhibited while the selection of
channel 2 is unaffected.

Our model passes this test in satisfactory manner, its re-
sults differ with the GPR in two ways. Firstly, it tends to
select channels in a sharper manner than the GPR, as it al-
ways reaches “perfect selection” (yGPi

i = 0). Secondly, the
global level of inhibition in the unselected channels is subject
to smaller variations, because of the regulatory effect of bal-
ance between the GPe global inhibition and the STN global
excitation over the GPi.

5.2 1000 random vectors test
In order to test the ability of the model to perform “perfect
selection” in a wide range of salience inputs and without any
influence of its initial state (a property implied by contraction
of the model), we fed a 6-channels system with a sequence
of 1000 randomly drawn salience vectors successively. The
saliences of each vectors are drawn uniformly in a 0 to 990
interval (discretisation step of 10), equal saliences are autho-
rised within the same vector. Each vector is presented dur-
ing 0.3s, at the end of this period, the “perfect selection” of
the channels with maximum salience is checked along with
the presence of perfectly selected channels corresponding to
other salience values. Then the next random vector is pre-
sented without resetting the system. This test was conducted
with our model and with a GPR model for which wLatDi was
set to 0.8.
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Figure 3: Simulation results (GPi/SNr inhibitory output) for
the first three channels of a 6-channels system, using the
Gurney et al. (2001b) test. Dashed lines represent the input
salience of the channel and solid lines represent the output of
the channel.



The first result of the test is that for our model, the “perfect
selection” of the channels with maximum salience was not
completed in only two cases out of thousand. This occurs
when the maximum salience is too low to enable the activity
in the striatal neurons to rise above the striatum thresholds
ε

D1
= ε

D2
= 200 and is thus unable to elicit selection, an

expected result as these thresholds are thought to filter low
level saliences. Concerning the GPR, processing the same
1000-vectors sequence, “perfect selection” was not obtained
in 54.6% of the cases, which is quite natural as the GPR is
not designed to perform “perfect selection”. The inhibitory
output of the GPi/SNr of the GPR model is close 160 when
the input salience vector is null, in which case no channel
should be selected. We thus chose a value of the θ threshold
equal to that maximum. In that case, there is no selection in
29.3% of the cases. It seems that in this range of salience
input, our model selects winning channels more efficiently
than the GPR.

The second result of the test is that the model has a nice
property of contrast enhancement, as the maximum can be
sorted out from its competitors even if they are quite close,
generating a perfect selection of the former and a strong in-
hibition of the latter. Indeed, simultaneous selection of the
channel with maximum salience with one of its competitors
happens only in 7.2% of the cases. Moreover, this only hap-
pens when the maximal salience value is high (µ = 907.5,
σ = 71.3) and when the difference between the maximal
salience and the salience of the supplementary selected chan-
nel is low (45 selections with a difference of 10, 24 with a
difference of 20, 2 with 30 and 1 with 40). We may thus infer
that the limit of discrimination between two saliences of our
model is probably inferior to a few percents.

6 Discussion
We proposed a new computational model of the basal gan-
glia exploring how their intrinsic computations operate the
physiologically observed “selection by disinhibition” (Cheva-
lier and Deniau, 1990), which is thought to be a fundamental
neural substrate of action selection in vertebrates (Redgrave
et al., 1999). This model shares a lot of similarities with the
previously proposed GPR model (Gurney et al., 2001b), as
its selection ability relies on two off-centre on-surround sub-
circuits. However, it includes neglected connections from the
GPe to the Striatum. Moreover, it distinguishes global pro-
jections of the GPe to the STN, GPi and SNr on the one hand
and channel-to-channel ones to the Striatum on the other.

We theoretically studied the dynamic behaviour of the net-
work and proved its stability by showing that it is contract-
ing and has an equilibrium point, and thus always converges
exponentially fast to this equilibrium. The independence of
this contraction with regards to the number of channels re-
sults from the diffuse inhibitions from GPe to STN. We also
showed that in an ideal case, implying conditions on the
saliences values, this equilibrium corresponds to a perfect
selection (where the channel corresponding to the highest
salience is completely disinhibited and all others inhibited).

In order to test the selection efficiency of the model in a
wider range of input conditions, we reproduced the basic se-

lection test proposed by Gurney et al. (2001b) and, above all,
evaluated the quality of selection when it is given a sequence
of 1000 random salience vectors. In both cases, perfect se-
lection was obtained, except in the rare cases where all the
components of the salience vector are too low to elicit selec-
tion. Moreover, the selectivity of the model in the second test
was better than the GPR.

We modelled the projections from GPe to striatum as hav-
ing a channel-to-channel selectivity. However, in their study
of five pallido-striatal neurons in rats, Bevan et al. (1998)
showed that their primary target seems to be the GABAer-
gic interneurons. First, given the limited extend of this study,
we cannot exclude the possibility that GPe-striatum projec-
tions also concern striatum projection neurons. Second, the
GABAergic interneurons inhibit the striatum projection neu-
rons in a relatively diffuse manner, a regulatory effect that is
different from but not opposed to our selective and direct pro-
jections: it controls the activity of the whole striatum and can
thus affect the contrast of the selection. An alternate version
of our model derived from these results should be tested.

We omitted two extra types of documented connections.
First, the STN projects to the GPe, GPi and SNr but also to
the striatum (Parent et al., 2000). Intriguingly, the population
of STN neurons projecting to the striatum does not project to
the other targets, while the other neurons project to at least
two of the other target nuclei. We could not decipher the role
of this striatum-projecting population and did not include it
in the current model. Its unique targeting specificity suggests
it could be functionally distinct from the other STN neurons.
This possibility should be explored in future work. The other
missing connections concerns the fact that D1 striatal neu-
rons probably simultaneously project to the GPi/SNr and the
GPe (Wu et al., 2000), and the fact that lateral inhibition exist
in GPe and SNr (Park et al., 1982; Juraska et al., 1977; De-
niau et al., 1982). These additional projections were added
to the GPR in an improved implementation (Gurney et al.,
2004), where the lateral inhibitions of the striatum were also
removed. We should add these connections and proceed to
a similar test with our model, knowing that the D1-GPe pro-
jections would create a new D1-GPe loop and generate an
additional constraint on the weights to ensure contraction.

The GPe to striatum connections have the previously
evoked functional advantage of enhancing the quality of the
selection, by silencing the unselected striatal neurons. Inter-
estingly, the striatum is known for being a relatively silent nu-
cleus (Wilson, 1993), a property supposed to be induced by
the specific up/down state behaviour of the striatal neurons.
When using simple neuron models, like leaky-integrators, it
is usually difficult to reproduce this with a threshold in the
transfer function only: when many channels have a strong
saliences input, all the corresponding striatal neurons tend to
be activated. Our model suggests that in such a case, the GPe-
striatum projections may contribute to silencing the striatum.

Finally, the basal ganglia are part of cortico-basal ganglia-
thalamo-cortical loops and the quality of selection of the GPR
model was improved by the addition of the thalamo-cortical
components (Humphries and Gurney, 2002). We plan to ex-
tend our model in a similar manner while trying to preserve
its contraction properties.
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