
Analyzing Interactions Between Navigation
Strategies Using a Computational Model of

Action Selection
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Abstract. For animals as well as for humans, the hypothesis of multiple
memory systems involved in different navigation strategies is supported
by several biological experiments. However, due to technical limitations,
it remains difficult for experimentalists to elucidate how these neural
systems interact. We present how a computational model of selection
between navigation strategies can be used to analyse phenomena that
cannot be directly observed in biological experiments. We reproduce an
experiment where the rat’s behaviour is assumed to be ruled by two
different navigation strategies (a cue-guided and a map-based one). Using
a modelling approach, we can explain the experimental results in terms
of interactions between these systems, either competing or cooperating
at specific moments of the experiment. Modelling such systems can help
biological investigations to explain and predict the animal behaviour.

Introduction

In natural environments, animals encounter situations where they have to si-
multaneously learn various means for reaching interesting locations and to se-
lect dynamically the best to use. Many neurobiological studies in both rodents
and humans have investigated how this selection is performed using experimen-
tal paradigms in which several navigation strategies may be learned in parallel.
Some strategies may be based on a spatial representation (i.e., inferring a goal-
directed action as a function of its location, called map-based strategies), whereas
other strategies can be based on direct sensory-motor associations without re-
quiring a spatial representation (i.e., map-free) [1–4]. A number of experimental
results lead to the hypothesis that these strategies are learned by separate mem-
ory systems, with the dorsolateral striatum involved in the acquisition of the
map-free strategies and the hippocampus mediating the map-based strategy [5,
6].

However, it is not yet clear whether these learning systems are independent
or whether they interact for action control in a competitive or in a cooperative
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manner. The competition implies that inactivation of one system enhances the
learning of the remaining functional system, while the cooperation states that
learning in one system would compensate the limitations of the other one [7–11].
The present work aims at investigating such interactions using a computational
model of spatial navigation based on the selection between the map-based and
map-free strategies [12]. Besides a qualitative reproduction of the experimental
results obtained in animals, the modelling approach allows us to further char-
acterize the competitive or cooperative nature of interactions between the two
strategies.

Following our previous modelling efforts [12], we study the interaction be-
tween the navigation strategies in the experimental paradigm proposed by Pearce
et al. (1998) [13]. In this paradigm, which is a modification of the Morris Hidden
Water Maze task [14], two groups of rats (“Control” group of intact animals and
“Hippocampal” group of animals with damaged hippocampus) had to reach a
hidden platform indicated by a landmark located at a fixed distance and ori-
entation from the platform. After four trials, the platform and its associated
landmark were moved to another location and a new session started. The au-
thors observed that both groups of animals were able to learn the location of the
hidden platform, but at the start of each new session the hippocampal animals
were significantly faster in finding the platform than controls. Moreover, only
the control rats were able to decrease their escape latencies within a session.
From these results, authors conclude that rats could simultaneously learn two
navigation strategies. On the one hand, a map-based strategy encodes a spatial
representation of the environment based on visual extra-maze landmarks and
self-movement information. On the other hand, a map-free strategy (called by
the authors “heading vector strategy”) encodes the goal location based on its
proximity and direction with respect to the intra-maze cue [15]. Based on these
conclusions, the decrease in the escape latency within sessions could be explained
by the learning of a spatial representation by intact animals. Furthermore, such
learning also suggests that when the platform is displaced at the start of a new
session, intact rats would swim to the previous (wrong) location of the platform
based on the learned map, whereas hippocampal animals would swim directly
to the correct location.

For the modelling purposes, the results of this experiment can be summarized
as follows: (i) both groups of rats could decrease their escape latencies across
sessions, but only the control rats improved their performance within sessions;
(ii) the improvement in the performance within each session, observed in the
control group, could be attributed to the use of a map-based strategy by these
rats; and (iii) higher performance of hippocampal rats relative to the controls
at the start of each session could be due to the use of the map-free strategy
(the only strategy that could be used by the lesioned animals). In other words,
the process of choosing the best strategy (i.e. the competition) performed by
the control, but not the hippocampal, animals, decreased the performance of
controls relative to that of lesioned animals.
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We have shown previously that the computational model used in the present
study is able to reproduce the behaviour of rats in the experiment of Pearce et
al. [12]. In the present paper, we extend these results by performing a further
analysis of the interactions between both learning systems at different stages of
the experiment, taking into account the three points formulated above. In the
following section, we describe the model, the simulated environment and the
experimental protocol. Then we present the results and the analyses. Finally, we
discuss the results in terms of interactions between systems.

1 Methods and Simulation

1.1 Navigation Model

The neural network computational model is based on the hypothesis of different,
parallel learning systems exclusively involved in each strategy, and interacting
for behaviour control (Fig. 1). It is composed of two experts, learning separately
a map-based strategy and a map-free one (the experts are denoted MBe, and
MFe, respectively), both following reinforcement learning rules to acquire their
policy, i.e., the way the expert chooses an action given the current state in or-
der to maximize the reward. The model provides a mechanism that selects, at
each timestep, which strategy should drive the behaviour of the simulated robot,
given its reliability to find the goal. This section briefly describes both naviga-
tional experts, their learning process as well as the selection mechanism and the
learning mechanism underlying this selection (for a more detailed description
see [12]).

Gating network
AC AC

Selection

Sensory inputs
Place cells

gMFe gMBe

ΦMFe ,AMFe ΦMBe ,AMBe

MFe MBe

Φ

Fig. 1. The computational model of strategy selection [12]. The gating network receives
the inputs of both experts, and their reward prediction error, in order to compute their
reliability according to their performance (i.e., gating values gk). Gating values are
then used with the Action value Ak in order to compute the probability of each expert
to be selected. The direction Φ proposed by the winning expert is then performed. See
text for further explanations.



4 Interactions Between Navigation Strategies

The map-free strategy is encoded by the MFe that receives visual signals from
sensory cells (SI), consisting of a vector of 36 inputs of gray values (one input for
every ten degrees), transducing a 360 degrees horizontal 1-D gray-scale image.
To simulate the heading vector strategy stated by Pearce et al., the landmark is
viewed with an allocentric reference: for example, when the landmark is located
to the North with regards to the robot, it will appear in the same area of the
camera, whatever might be the orientation of the robot.

The map-based strategy is encoded by the MBe that receives information
from a spatial representation encoded in a regular grid of 1600 place cells (PC)
with Gaussian receptive fields of width σPC [16] (values of all model parameters
are given in Table 1).

(a)

*

*

*

*

(b)

Fig. 2. (a) A simplified view of ad hoc place cells. Each circle represents a place cell
and is located at the cell’s preferred position (i.e., the place where the cells are most
active). Cell activity is color coded from white (inactive cells) to black (highly active
cells) (b) The environment used in our simulation (open circles: platform locations,
stars: landmarks)

Strategy Learning. Both experts learn the association between their inputs
and the actions leading the robot to the platform, using a direct mapping be-
tween inputs (either SI or PC) and directions of movement (i.e., actions). Move-
ments are encoded by a population of 36 action cells (AC). The policy is learned
by both experts by means of a neural implementation of Q-learning algorithm
[17]. In this algorithm, the value of every state-action pair is learned by updating
the synaptic weight wij linking input cell i to action cell j:

∆wij = ηhkδeij , (1)

where η is the learning rate and δ the reward prediction error. The scaling
factor hk ensures that the learning module is updating its weights according to
its reliability (for all the following equations, k is either the MBe or the MFe). Its
computation is detailed further below. The eligibility trace e allows the expert
to reinforce the state-action couples previously chosen during the trajectory:

eij(t + 1) = rpre
j ri + λeij(t), (2)
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where rpre
j is the activity of the pre-synaptic cell j, λ a decay factor, and ri the

activity of the action cell i in the generalization phase. Generalization in the
action space is achieved by reinforcing every action weighted by a Gaussian of
standard deviation σac centered on the chosen action. Each expert suggests a
direction of movement Φk:

Φk = arctan

(∑
i ak

i sin(φi)∑
i ak

i cos(φi)

)
, (3)

where ai is the action value of the discrete direction of movement φi and its cor-
responding action-value Ak, computed by linear interpolation of the two nearest
discrete actions [17].

Action Selection. In order to select the direction Φ of the next robot move-
ment, the model uses a gating scheme such that the probability of being selected
depends not only on the Q-values of the actions (Ak), but also on a gating value
gk. Gating values are updated in order to quantify the expert’s reliability ac-
cording to the current inputs. It takes the shape of a network linking the inputs
(place cells and sensory inputs) to the gating values gk, computed as a weighted
sum:

gk = zPC
k rPC + zSI

k rSI , (4)

where zPC
k is the synaptic weight linking the PC, with activation rPC to the

gate k, idem for zSI
k . Weights are updated in order to approach hk = gkck∑

i
(gici)

where ck = e(−ρδ2
k) (ρ > 0), according to the following rule:

∆zPC,SI
kj = ξ(hk − gk)rPC,SI

j . (5)

The next action will be then chosen according to a probability of selection P :

P (Φ = Φk) =
gkAk

∑
i∈k giAi

. (6)

If both experts have the same gating value (i.e., reliability), then the expert
with the highest action value will be chosen. In contrast, if both experts have
the same action value, the most reliable expert, i.e., the one with highest gating
value, will be chosen.

1.2 Simulated Environment and Protocol

In our simulation, the environment is a square of size equivalent to 200×200
cm, while the simulated robot’s diameter is 15 cm (Fig. 2b). The landmark,
represented by a star of diameter 10 cm, is always situated at a constant distance
of 30 cm to the North of the platform, whose diameter is 20 cm. These dimensions
have been chosen in order to keep similar ratio of distances as in Pearce et al.’s
experimental setting (the platform’s size has been scaled up, as the original size
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Table 1. Parameters of the model

Parameters Value Description

NPC 1600 Number of place cells
σPC 10 cm Standard deviation of PC’s activity profile
NAC 36 Number of action cells
σAC 22.5˚ Standard deviation of the enforced activity profile

η 0.015 Learning rate of both experts
λ 0.76 Decay factor of both experts
ξ 0.01 Learning rate of the gating network
ρ 1.0 Decreasing rate in ck

(10 cm) was too small and did not allow the experts to learn the task). The
number of possible locations of the platform has been reduced from eight to
four, in order to compensate the new size of the platform. As in [13], at the
beginning of each trial, the simulated robot is placed at a random position at
least 120 cm from the platform. The robot moving speed is 10 cm per timestep,
meaning that it requires at least 12 timesteps to reach the platform. If it is not
able to reach the platform in 150 timesteps, it is automatically guided to it, as
were the actual rats. A positive reward (R = 1) is provided when the platform
is reached.

We performed three sets of 50 experiments. In the first set, both experts
(MBe and MFe) are functional (Control group), in the second set only the MFe
is activated (Hippocampal group). For the third set of experiments, only the
MBe is activated. This “Striatal group” emulates a striatal lesion not included
in the original experiment.

1.3 Data Analysis

Performances of different groups were statistically assessed by comparing their
mean escape latency (signed-rank Wilcoxon test for matched-paired samples).
Moreover, following Pearce’s analysis, we assess learning differences within a ses-
sion by comparing the performance on the first and fourth trials using the same
test as before. Concerning the differences between both groups (i.e., between the
first trials of Control and Hippocampal groups, and between their fourth trials),
we use a Mann-Whitney test for non matched-paired samples.

To assess strategy changes during the whole experiment, we compare their se-
lection rates at every first and fourth trials of both early (first three sessions) and
late sessions (last three sessions). The selection rate of each expert is recorded
on two squares of 0.4 m2, centered on the current and on the previous platform
positions and is computed as the number of times the robot chooses one strategy
over the total number of times it goes inside each of these regions.

In order to estimate strategy changes within a trial, the selected strategy
at each timestep is recorded. Since trajectories have different lengths, they are
first normalized in 10 bins, then we compute the selection rate on each of these
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bins. The navigational maps of both experts, the preferred orientation at each
location of the environment, are also provided in order to illustrate changes in
the expert’s learning across trials or sessions.

Finally, we evaluate the influence of the robot’s behaviour when controlled by
an expert on the learning of another expert. The averaged heading error across
the sessions is computed for the three groups. This heading error corresponds to
the difference between the actual direction of movement proposed by the expert
and the “ideal” direction, pointing to the current platform location (the heading
error will be zero when the robot points towards the platform; an error of one
means that the robot moves in the opposite direction). This error is computed
in the neighbourhood of the current platform –on a square of 0.4 m2– in order to
take values from places that are sufficiently explored by the robot. The influence
between experts can be assessed by measuring whether the heading error for one
of the strategies decreases as a result of the execution of the other strategy.

2 Results

2.1 Learning Across and Within Session

Our model qualitatively reproduces the results obtained in animals (Fig. 3a).
As shown in Fig. 3b, both Control and Hippocampal groups are able to learn
the task, i.e., their escape latencies decrease with training. Moreover, the perfor-
mance of the Control group improves within each session, as there is a significant
decrement of the escape latency between the first and fourth trials (p<0.001).
Finally, as it was the case with rats, escape latencies of the Hippocampal group
in the first trial are smaller than the Control group (p<0.001). Concerning the
Striatal group, Fig. 3c shows a significant improvement within session for this
group, but no learning is achieved across sessions, suggesting a key role of the
MFe in the performance improvement across sessions of the Control group.

2.2 Role of Interactions Between the MFe and the MBe in the
Control Group

First trials: Increase of MFe Selection Across Sessions and Competi-
tion Between the MFe and the MBe Within Trials
In the first trial of every session, the platform is relocated, so as the learned strat-
egy by the MBe in the previous session is not relevant anymore. Accordingly, the
selection of the MFe expert near the current platform location increases from
the early to the late sessions (p<0.05), strongly suggesting a role of the MFe in
the latency decrease across sessions that occurs in the Control group (Fig. 4a).
Fig. 4a also shows that the MBe is often selected near the previous platform
location, suggesting the existence of a competition between both experts. MBe
preference does not change within a trajectory and is in average less selected
than the MFe (Fig. 4b).

The trajectories (Fig. 5a and 5b) confirm the existence of a competition: the
MBe tends to lead the robot to the previous location of the platform – as shown
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(a) Control and Hippocampal (Pearce) (b) Control and Hippocampal (c) Control and Striatal

Fig. 3. Mean escape latencies measured during the first and the fourth trial of each
session. (a) Results of the original experiment with rats, reproduced from [13]. (b)
Hippocampal group (MFe only) versus Control group (provided with both a MFe and
a MBe). (c) Striatal group (MBe only) versus Control group. See text for explanations.
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the current and the previous platform in early (top) and late sessions (bottom) (b)
Selection rates of MBe and current goal occupation within trial in early (top) and late
(bottom) sessions
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in the navigational maps of this expert (Fig. 5c and 5d) – whereas the MFe has
learned to orient the robot towards the appropriate direction, i.e., at the South
of the landmark (Fig. 5e and 5f). This result is consistent with the explanation
provided by Pearce and colleagues and shows that the competition between the
MBe and the MFe is mainly responsible for the poor performances of the Control
group in the first trials.

*
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*

(a)

*

*

*

*

(c) MBe

*

*

*

*

(e) MFe

*

*

*

*

(b)

*

*

*

*

(d) MBe

*

*

*

*

(f) MFe

MBe
MFe

Current platform

Previous platform

Fig. 5. First trials: (a) Trajectory of the robot for the 3rd session (b) Trajectory of
the robot for the 9th session. (c) Navigational map of the MBe for the 3rd session (d)
Navigational map of the MBe for the 9th session (e) Navigational map of the MFe for
the 3rd session (f) Navigational map of the MFe for the 9th session.

Fourth trials: Cooperation Between the MFe and the MBe Within
Trials

At the end of a session, the platform location remained stable during four
trials, allowing the MBe to learn its location. According to Pearce’s hypoth-
esis, rats behaviour depends mainly on the map-based strategy (involving the
hippocampus) that has learned the platform location for this session. However,
simulation results show that the Striatal group –controlled by the MBe only– is
outperformed by both the Hippocampal and the Control groups, despite a high
improvement within sessions (c.f. Fig. 3c). This suggests that the performance
of the Control group on the fourth trials cannot be explained exclusively by the
MBe expert. Indeed, although this expert leads the agent towards the current
goal position, it also leads to the previous goal location as illustrated by its selec-
tion rate on both sites (Fig. 6a). In addition, selection rates within a trajectory
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show a strategy change from the MFe –which is preferred at the beginning of a
trial– towards a preference for the MBe at the end of the trajectory (Fig. 6b).
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This sequence is visible in typical trajectories (Fig. 7a and 7b). The naviga-
tional maps of each expert reveal that the MFe orients the robot towards the
South of the landmark (Fig. 7e and 7f), whereas the MBe leads it on the precise
location of the platform, only when it is at its vicinity (Fig. 7c and 7d).

This suggests that the experts are cooperating by both adequately partici-
pating to the resolution of the task, depending on their reliability at a specific
point of the journey. Our findings –pointing out a cooperative interaction at the
end of each session– extend Pearce’s hypothesis of MBe dominance in behaviour
control.

2.3 Interactions Between MFe and MBe

In simulations of both the Hippocampal and Striatal groups, the inactivation of
one expert only prevented it to control the robot’s behaviour, but not to learn.
We can thus analyze how the interactions influence the learning of each strategy.

First, looking at the accuracy of both experts in the neighbourhood of the
current platform (Fig. 8), we observe that when the robot behavior is driven by
the MBe (i.e. Striatal group), the performance of the MFe decreases (Fig. 8c).
Second, we observe that MBe performs better in the Control group (Fig. 8a) than
in Striatal and Hippocampal groups (Fig. 8b and c), presumably because of the
influence of the efficient learning of the MFe (i.e., cooperative interactions).

The navigational maps of MFe are similar –i.e., pointing to the South of
the landmark– for the Control, Striatal and Hippocampal groups, despite the
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Fig. 7. Fourth trials: (a) Trajectory of the robot for the 3rd session (b) Trajectory of
the robot for the 11th session. (c) Navigational map of the MBe for the 3rd session (d)
Navigational map of the MBe for the 11th session (e) Navigational map of the MFe for
the 3rd session (f) Navigational map of the MFe for the 11th session.
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Fig. 8. Average heading error near the current platform for the three groups. Zero
means the expert is pointing to the platform, one means a difference of π. (a) Results
in the Control group (MBe and MFe activated) (b) Hippocampal group (MFe only) (c)
Striatal group (MBe only)
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difference of performance observed above (Fig. 9c, d and 7f). In contrast, those
of the MBe are different: in the Striatal group (Fig. 9a), the MBe is less attracted
by the previous platform location than in the Control group (Fig. 7d), whereas
it is attracted by the four possible locations in the Hippocampal group (Fig. 9b).
The MBe is able to reach the every possible platform location, but only since it
is in its vicinity. This suggests that a cooperation between the MFe –leading the
robot to the neighbourhood of the current platform– and the MBe –finding the
precise location once the robot is there– would perform well and enhance the
performances of the robot. Therefore, this particular configuration of the MBe
is impaired in the case where the MBe should perform the trajectory alone, but
enhanced in the case of a cooperation with the MFe.
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(a) MBe in Striatal
group

(MBe only)

*

*

*

*

(b) MBe in
Hippocampal group

(MFe only)

*

*

*

*

(c) MFe in Striatal
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(d) MFe in
Hippocampal group

(MFe only)

Current platform

Previous platform

Fig. 9. (a) Navigational map of the MBe in the Striatal group in the last session (fourth
trial): there are no center of attractions in other platform locations than the current
and the previous ones
(b) Navigational map of the MBe in the Hippocampal group in the last session (fourth
trial): the MBe has learned the ways to go the four possible locations of the platform
(c) Navigational map of the MFe in the Striatal group in the last session (fourth trial):
it has learned the same kind of map as in the Hippocampal and the Control groups
(d) Navigational map of the MFe in the Hippocampal group in the last session (fourth
trial): the learned policy is very close to the one in the Striatal group

We observe that the behavior of the robot when controlled by the MFe,
strongly influence the MBe. In contrast, the MBe-based behavior has less influ-
ence on the improvement of the MFe strategy. Remarkably, activation of both
experts (i.e., Control group) do not impair the simultaneous learning of both
strategies and allows the MBe to achieve better performance than when this
expert is the only one available.

3 Discussion

3.1 Competition and Cooperation

We have been able to reproduce the behaviour of rats in an experiment designed
to study interactions between different spatial learning systems. Our simulation
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results are consistent with the original hypothesis of competitive interaction
between map-based (MB) and map-free (MF) strategies at the start of a session
when the location of the hidden cue-marked platform suddenly changes [13]. In
addition, our model suggests a cooperative interaction during the learning of
current location within a session. In these trials, the MF strategy is preferred
at the beginning of the journey when the local cue gives information about
the general direction to follow, while the robot gets closer to the goal, the MB
strategy provides more accurate information about the real platform location
and is chosen more often.

Other experimental studies have reported strategy changes during a journey
depending on the available information and the animal previous experience [18,
19]. In [19] a change from a map-based to a taxon strategy is described when
rats where looking for a visible, stable platform. Contrasting to Pearce et al.’s
settings, there are no intra-maze cues, and the authors report that rats first
used distal landmarks to find a general direction, then approached the platform
using a taxon strategy. Both, our results and those of Hamilton follow the same
rationale, i.e., rats first choose a general direction of movement, and then choose
the strategy that allows them to accurately locate the platform. Rat’s head
scanning was analyzed in order to estimate the strategy changes. The same
approach could be applied to the animal trajectories in Pearce’s paradigm in
order to identify whether the strategy change predicted by our model is confirmed
by the rats’ behaviour.

3.2 Synergistic Interactions and Dependence of an Expert on
Another One

Changes in the heading error, assessed by the evolution of the error in the dif-
ferent experimental groups, suggest synergistic interactions between the two ex-
perts. The MFe orients the robot towards the landmark, and the MBe helps the
robot to find the platform in the vicinity of the Landmark. If we define an ex-
pert as being dependent on another based on its ability to achieve a task alone,
we conclude that MBe is dependent on the MFe, as the MBe does not learn the
task across sessions. It should be noticed that an opposite relationship –i.e., MFe
depending on MBe– has been reported in different experimental conditions (see
[11] for a review).

3.3 Further Work

Despite qualitatively reproducing most of the results reported by Pearce et al.
[13], our model differs from animal results since a performance improvement was
observed within sessions in the Hippocampal group. This difference seems to be
mainly due to the learning process of the MFe in cases where, in the previous
session, the robot could reach the platform only by following the landmark (for
example, if the platform is at the North, as illustrated in Fig. 10). This impair-
ments can also explain the absence of convergence of both groups in the last
session.
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Fig. 10. (a) Trajectory at the fourth trial of the 7th session: as the simulated robot
mainly went to this platform from the South, direction to the North were reinforced,
even at the North of the platform.
(b) Trajectory at the first trial of the 8th session: Starting from North, the robot needs
then a longer trial to readjust the direction towards the current platform.
(c) Navigational map of the MFe at the fourth trial of the 7th session : direction to the
North were reinforced, even at the North of the platform.
(d) Navigational map of the MFe at the first trial of the 8th session.
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In contrast to Pearce’s results, no significant difference is found between
the fourth trials of the Control and Hippocampal groups. We impute this to the
stochastic selection process –i.e., the probabilities associated with a strategy (see
section 1.1)– which is sometimes sub-optimal. More generally our results might
be improved by the use of a dynamically updated hippocampal map, as well as
the use of explicit extra-maze cues on which –according to the authors– both
strategies were anchored. In our simulation, these cues were only designed by an
absolute reference for the MFe, and an ad hoc cognitive map for the MBe. Finally,
models of map-based strategy different than place-response associations, can be
taken into account. The place-response strategy currently used in the model
associates locations to actions that lead to a single goal location. Therefore,
when the platform is relocated, the strategy has to be relearned. An alternative
map-based strategy can be proposed such as the relations between different
locations are learned irrespectively of the goal location (e.g. a topographical
map of the environment). Planning strategies can be used to fin the new goal
location without relearning [3]. The use of computational models of planning
(e.g. [20, 21]) as a map-based strategy in our model can yield further insights on
the use of spatial information in these types of tasks.

4 Conclusion

What stands out from our results is that our model allowed to analyze the
selection changes between both learning systems, while providing information
that is not directly accessible in experiments with animals (e.g., strategy selection
rate, expert reliability). This information can be used to elaborate predictions,
and propose new experiments towards the two-fold goal of further improving
our models and expand our knowledge of animal behaviour. It showed also that
opposite interactions can happen within a single experiment, and depend mainly
on contextual contingencies and practice, as it has been suggested by recent
works (e.g., [22, 23]).

Coexistence of several spatial learning systems allows animals to dynami-
cally select which navigation strategy is the most appropriate to achieve their
behavioural goals. Furthermore, interaction among these systems may improve
the performance, either by speeding learning through collaboration of different
strategies, or competitive processes that prevents sub-optimal strategies to be
applied. Besides, better understanding of these interactions in animals by use
of the modelling approach described in this paper also contributes to the im-
provement of autonomous robot navigation systems. Indeed, several bioinspired
studies began exploring the robotic use of multiple navigation strategies [12,
24–26], the topic is however far from being fully explored yet.
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